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Let G” denote the discrete group associated to a Lie group G. Let B denote the 
classifying space functor associated to topological groups. The Eilenberg-MacLane 
homology H*(G, H) can be identified with H*(BG*, Z). Based on suggestions made 
by Friedlander concerning the Lichtenbaum-Quillen conjecture on the cohomology 
of GL(q F) for an algebraically closed field F, Milnor [ 1 I] posed the following 
conjecture: 

The natural map H*(BG’, F,)+HdBG, ffP) is an isomorphism for aN primes p. 

As evidence, Milnor showed that the conjecture depends only on the Lie algebra of 
G and verified it for solvable groups. The general case is then reduced to the case 
where G is connected, simple and nonabelian (and simply connected whenever 
convient). Under these added hypotheses, Milnor showed that the natural map is 
always surjective. Most of the additional evidence supporting the conjecture occurs 
on the level of Hz and is based on ‘&-calculations or Schur multiplier calculations 
due to Steinberg, Matsumoto-Moore, see [IO, 171, and Deodhar [3]. In a separate 
work [ 141, a beautiful theorem of Mather, see [8] or (11, has been extended so that 
the above conjecture is correct for H,(G, ffP) where G is any compact Lie group of 
classical type. Beyond the level of Hz, precise evidence becomes very sparse. In 
fact, the only known case is that of HJ(SL(2, C), I&) found in DuPont-Sah [4). 

The present work is a variation of DuPont-Sah [4]. The fact that IR is not 
algebraically closed VKI the fact that SL(2, IR) is not simply connected both cause 
some difficulties. The ~qult we obtain is not as strong as that in DuPont-Sah. 
Namely, we are only able to show that H3(SL(2, IF?@‘) is 2-divisible, or 
H3(SL(2, Ii?), IF,) = 0, and thereby confirming the conjecture of Milnor in this case. 

To be more precise, we take advantage of the ordering of IR to define a simplicial 
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complex M’ with SJ..(2, IR) acting simplicially. This is a variation of the idea of 
Bloch-Wigner that was worked out in Dupont-Sah [4]. H,( W/SL(2, lR)d) is then 
shown to be an abelian group generated by ‘cross-ratio’ symbols: {r}, r > 1, with 
defining relations: 

b: I- W + {Q/r*} - {(rz- lV(rl - 1)) + ((1 -Q)/(l -ri’)} =O, 

1 <r,<r2 in IT?. 

Using Rogers’ L-function [ 121, { 2) is shown to generate an infinite cyclic subgroup 
of H,( U?‘SL(2, t’i?)“) and 48 9 (2) then generates the subgroup corresponding to the 
infinite direct summand of HZ(SL(2, m), H) with generator c(- 1, -1). This latter 
arises from the fundamental group of SL(2, m). The number 48 appears suspiciously 
similar to the order of the cyclic group K&Z). This use of Rogers’ L-function 
is similar to the use of the dilogarithm by Bloch-Wigner [2], DuPont-Sah [4], 
Gelfand-MacPherson [S], and Wigner [ 181. It should be emphasized that the defin- 
ing relations are the basic objects of our concern. This is the same philosophy as 
that of the various references just mentioned. However, our approach is more 
primitive. Specifically, we have not touched the geometry of the space obtained 
from W through a ‘filling-in’ process, compare Gelfand-MacPherson [5]. The 
group H,(SL(2, RR), Z) appears as a subgroup of H,( W/SL(2,lRf>./Z- 48{2} in the 
form of the kernel of a ‘Dehn-invariant’ homomorphism and the quolient is a 
suitable Q-subspace of the Q-vector space &(IK+). This fits with the description in 
Dupont-Sah [4], as well as Sah-Wagoner [ 151. The 2-divisibility of H3(SL(2, IT?), Z) 
then follows from the 2-divisibility of H3( W/SL(2, IR)“). According t9 Milnor’s 
conjecture, H,( WSL(2, tR)3) should be a Q-vector space for i ~3 An equivalent 
formulation was suggested by Wu-Chung Hsiang for a complex of the same (weak) 
homotopy type as W/SL(2, lQd. We show that the known torsion in 
H,(SL(Z, N, Z) leads to a direct summand isomorphic to Q in H3( W/SL(2, I?)“) 
with (2) as a generator. It should be noted that the usual number theoretic construc- 
tion of discrete cofinite volume subgroup of SL(2, C) is not available to generate 
elements of H,(SL(2, IR)) so that nontorsion elements of HJ(SL(2, IR)) would have 
to be constructed by other means (see Appendix B). A tempting conjecture on the 
structure of H3( W/SL(2, /Q3) would be that the Dehn-invariant and the homomor- 
phism based on Rogers’ L-function detect H,( W/SL(2, K#). Testing of this con- 
jecture in terms of the presentation of H3( W/SL(2, IR)“) leads to many curious 
questions that we hope to consider elsewhere. 

It should be apparent that the present work owes much to J.L. DuPont, as well 
as S. Bloeh and D. Wigner. In addition, conversations with Wu-Chung Hsiang con- 
vinced us that a detailed study of H3(SL(2, IR), Z) should be carried out in order to 

reveal some of the difficulties that have to be rt;solved in tackling the conjecture of 
Milnor (at least for SL(n, IR)). Finally, one of the arguments used was worked out 
during a conversation with A.T. Vasquez.We wish to thank each of them for the 
inspirations they provided us. 
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1. A simplicial complex for SL(2, IR) 

Let G= SL(2, R). Let S(lR2) denote the space of a.11 ray5 in lR2 emanating from 
the origin. s(fR2) therefore doubly covers the projective line iP’(R). We will 
parametrize a precise fundamental domain for this double covering by the set 
IRU { -00). Namely, the ray iR+ l (i’ ) will be labelled by - 00 and the ray IR+. (;) 
will be labelled by r E IR. This parametrization of iP’(iR) or more precisely of a 
semicirle will be called the slope parametrization. It can also be parametrized by 
6 = arctan r E [ -~/2, n/2). This latter will be called the radian parametrization. We 
note tlhat the universal covering space of lP’(R) or of SqlR2) is simply IR. We can 
identify these spaces through the Iwasawa decomposition G =KAN with 
K = SO(2, F?), A z lR+ is the group of diagonal matrices with positive diagonal 
entries, and N is the group of all upper unipotent matricies so that ZVz R. We have 
the following central extension for the universal covering group G of G: 

(1-l) O+n,(G)+&G--,l. 

The Iwasawa decomposition of G can be lifted to the following decomposition of c: 

(1 a e = IF? A?!. 

The extension (1.1) splits on the subgroup AN of G. The connectivity of A!V 
shows that the splitting is unique. As a result, we can identify _4N in a unique 
manner with a subgroup of G. S(lR2) can be identified with K or with the coset 
space G/AN and its universal covering space can be identified with &AN. We note 
that the center of G is an infinite cyclic group containing nl(G) 8; a subgroup of 
index 2. The generator of nl(G) is usually denoted by the symbol c(- 1, -l), see 
Sah-Wagoner [ 151. 

(1.3) q(G)=h*c(-1, -1). 

The symbol c( - 1, - 1) is mapped cnto the syrr bol { - 1, - I} in K2(lR). The latter is 
the unique element of order 2 in K2(R). 

Let W be the simplicial complex forrr ed by all nonempty finite subsets 

{ 00 Y l ** 9 Ui} C s(m2), satisfying the following convexity co:?dition: 

(1.4) VO , . . . , Di ar< contained in some (varying) open half plane. 

Let C,( W) denote the complex of alternating simplicial chains on W. Using \( 1.4), 
we see that: 

Ci is a free abelian group based on (oo, . . . , Di) such that v, 
(1.3) precedes v, for SC t in the counterclockwise orientation of S(R2) 

a;ld Ocarg vi- argvo<n when i>O. 

Evidently, G = SL(2, IR) acts simplicially on W through Its action on S(lR2). It is 
easy to see that: 
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Ci is ZG-free for i ~2. CZ is isomorphic to the group ring of G 
using the generator (- o>,O, 1) in the slope parametrization. Ci is 
ZX-free for i 10 with Co isomorphic to the group ring of K using 
the generator (- 80). 
Cl z i:ldzZ l (- w,O), COrindzNZ l (- 00). 

i 
There is no croblem constructing a simplicial complex fi covering W with nl(G) 

a$ the group “:’ covering transformations. Namely, @ is just the simplicial complex 
’ ;I” all nonempty finite subsets (&, . . . , 0,) of real numbers satisfying the condition: 

II,< .** co,, 0<0i-@o<X when i>O. 

projection map is then induced from the covering map: R+S(R’). Let C,(w) 
c!‘enote the alternating simplicial chain complex associated to I@. It is immediate 

* i’ 
chat: 

(1.8) C*( W) 3 C*( FQ)@-,,(G, B, II I(G) acts freely on @‘. 

1.9. Proposition. The chain cornpku C*( @) is acyclic with augmentation Z. 
C’,( U’) hus the integral homology of the circle S(R”). C,(W)&, H is 2-acyclic 
with augmentation Z and can be identified with the complex of cellular chains on 
a celi cornpIes W/G a s i&‘/G ‘. 

Proof. Using the linear structure of R, each si.mplex of @ can be identified with 
a unique singular simplex of R. This identifies w with a subcomplex of the total 
singular complex of R. Using barycentric sulbdivision and simplicial approximation, 
it is easy to see that @ is chain equivalent to the total singular complex df R. This 
yields the acyclicity of C,( I&‘). We note that the identification descrihcd is only com- 
patible with the subgroup R of 6 

Since C,( I&‘) is acyclic and is Zn, (C)-free, it follows that the homology of 

C*( ~)o_-,,(<;, Z is just the Eilenberg-MacLane homology of nJG)sB. Since the 
circle S(lr;‘) is a K(Z, I)-space, we have the second assertion. 

Since G” acts simplicially on U’, there is no problem constructing a cell complex 
structure on U7G” compatible with the projection map. Same statement holds 
for d”, #’ as well as w/6’. The homeomorphism between W/G” and p/c’ 
follows from ( 1.1) and the fact that U’= I&‘/X I(G). The 2-acyclicity follows from 
ihe fact that M//G” has only one cell in dimensions 0, 1 and 2 as indicated in (1.6) 
arld the boundary of the 2-cell is just the l-cell. The identification of C,(W)@,&Z 

as the complex of cellular chains is clear. Ll 

At this point, the complex C,( u’l) can be used to compute the integral homology 
of c alon well-known lines. Namely, the second index filtration of the double com- 
plex C&@--G C,( @‘) leads to a spectral sequence “E& converging to H&?,Z), 
$ec Serrc [ 16, p. 951. 
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2. Homology of SL(2, R) and &(2, IR) 

We begin the study of H&%(2, R), Z) through the spectral sequence mentioned 
at the end of Section 1. We set G = SL(2, II?) and c= %(2, R). “E’& is then 
Hi@, C”( w)) and can be displayed below: 

. . . 

c#v/@Q 0 l ** 
‘=&a* 

(2.1) z 0 . . . 

z A H2(A,‘)*(-oo,O),.*.,Hi(A,h)*(-oo,O) 

a: A H2(A,‘)*(-m), . . ..Hi(A.Z)*(-m) 

Since A z IR through the logarithm map, Hi(A, Z)ZU$(R) is a Q-vector space for 
j>O. The vanishing of “E& for i>O and ~%2 follows from the fact that Cj( IV) is 
&-free for jr 2. Compare (1.6) for the analogous statements for W and G. The 
description of “Elj for j=O and 1 follows from Shapiro’s Lemma together with the 
analogous induced module structure described in (1.6). For j = 0, we used center 
kills lemma together with the fact thr AN is the semidirect product of tl? by IT?+. 
Note that rc lR+ = A acts qn NZ IR through multiplication by r2. Since the nor- 
malizer of A in G induces inversion on A and covers a rotation of n/2 radians, the 
map d’ from the row indexed by j= 1 is multiplication by (- 1)’ - 1 on Ai( We 
display the “E& terms: 

. . . 

(2.2) 
d2=0 

0 0 n:(m) l (-=,O) 0 /i;(m)- (- =,O), . . . 

z 0 &!m ’ e 04 0 A;(m)* (-a), . . . 

According to the conjecture in Milnor [ll], the contractible Lie group G should 
be finitely acyclic, i.e., it has the 1F,-homology of a point. It is evident from (2.2) . 
that: 

2.3. Proposition. Equivalent statements are: 
(a) SIL(2, IT?) is finitely acyclic. 
(b) The ceil complex r/c6 or W/G’ is finitely acyclic. 

In an oral communication, Wu-Chung Hsiang had conjectured the validity of (b) 
in Proposition 2.3 for a slightly different cell complex. It is not too difficult to show 
that his cell complex is (weakly) homotopically equivalent to ours. We will now con- 
sider the structure of H3( 6X?). Conjecturally, Hj( JR/G’) is a Q-vector space for 
j23. We may work with either W/G” or m/G”. 
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Using (1.6), it is immediately clear that HJ( W/Gd) is generated by the 3-cells 
(- 00, 0, 1, r), r > 1, in the slope parametrization and satisfying the defining relations: 

{ > r I 
(2.4) 

- ir:,} + {I+,} -{(Q- l)/(rl - I)} + ((1 -rF’)/(l -r,‘)} =O 

where 1 < rl < r2 and {r} =(-qO,l,r), r> 1. 

We call { ri t’he cross-ratio symbol of (-q0, 1, r). The relation (2.4) arises from 
taking thi: : jundary of (-q0, 1, rl, r2). We remind ourselves about the rules on the 
action of a(2, fR) orn C3( W). The element 

in A, ab=l 

and a in IR’ multiplies the slope of a ray by a2. The element 

in N 

adds t to the slope. The usual rules governing - 00 are valid. We only apply these 
rules to rays in the parametrized semicircle. The same actually applies to the half 
circle rotated by n radians through the application of -12. The validity of (2.4) is 
now straight forwar,& 

In order to keep track of some of our calculations, we extend the symbol {r} for 
r in FU{(- 00) according to the following rules: 

(2.5) 

(2.6) 

(2.7) 

{-~}=:{0}={1)=0, 

(r} + {r-l} =O, r>O, 

(-r)=(l+r ‘>, r>O. 

As can be seen, these are really nothing more than tile fact that C,( W) is the alter- 
nating chain complex so that (- 00, rl , rz, r3) for ri in R should alternate with respect 
to permutations of rl, r2, r3 and be 0 when duplication occurs. 

With (2.5) through (2.7) in effect, it is easy to show that: 

(2.8) (2.4) remains valid provided that (r, - l)(rz - 1) > 0, rl, rl > 0. & 

We now consider 0 < r, < 1 and set s, = 1 - ri. Adding the relations (2.4) and using 
(2.6), (2.Q we obtain 

(2.9) (q}+ (Lr1>={r2)+(l-r,,], O<r,Cl. 

Combining (2.61, 02.7) with (2.9), we have 

(2.10) M+{l-r) =-2{2}=-2(-1}=2{1/2}, O<r<l. 

Setting r = (1 +s)--‘, s >O, (2.10) is equivalent with 

(2. I 1) (r+sj-- ~l+s-*)=2{2}=2{-1}, S>O. 
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Using (2.7) and (2.11), we obtain 

(2.12) {-t}+{-t-‘}=2{-1}=2(2}, 00. 

If we set ri = ri, r > 1, then (2.4) gives 

(2.13) {r2}=2{r}+{1+r-1}-{1+r}=2{r}-~2{-r}-2{-1}, r>l. 

Actually, (2.13) is valid for r in lRx through (2.6), (2.12) and symmetry with respect 
to - 1. We note that it is valid for r= 1 through (2.5). 

2.14. Proposition. H3( W/G”) is 2-divisible. Moreover, there is a surjective 
homomorphism 

with the properties: 
(a) L is a bijective map between the set of generators ( r >, r > 1 and the open inter- 

val (0, &6). 
(b) As a function of r, r > 1) L (r ] is strictly increasing and analytic in r. 
(c) Setting x= 1 -r-l so that r=(l -x)-‘, r> 1 and kx<l, then i can be 

defined :hrough the Rogers’ L-function f given by the relations: 

and 
L(r) =f(x)=.f(l -r-l), r> 1 

f(x)= C x”/n2+(logx)40g(l -x))/2, OCXC~. 
nrl 

Proof. The first assertion follows from (2.13) together with the fact that 
H,( W/G”) is generated by the symbols {s}, s > 1. We only have to set s= r2, r> 1 

and apply (2.13). 
Rogers’ L-function f was studied in [ 121. It is clearly analvtic for O<x< 1 and 

can be defined by the improper integral: 

f( ) 
1 

X =__ 

2 
dt, O<x<l. 

It is evidently positive and strictly increasing with lirn,,l f(x) = x2/6. Moreover, 
Rogers showed that .f satisfies the identities: 

f(x)+f(l -x)=x2/6, Ocx< 1, 

f(x) +f(r) =f(xr> +f (X2!) +f(=), o<x, y< 1. 

Using the first of these, the second one can be rewritten in the form: 
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Using (2.6). the defining relation (2.4) can be translated to the defining relation in 
terms of generators {s} , 0 <SC 1, satisfying 

{s*} - ‘1(sz) + {s&} - ((1 -$)I(1 -sy’)} + ((1 -s,)/(l -s*)} =o, 
(2.16) 

O<$J<S, < 1, sj =$ in (2.4). 

Setting sl = (1 --x)/‘( 1 -.X-Y) and s 2 = (y -xy)/( 1 -xy) in (2.16), we obtain 

(2.17) +{y}-{xy}+{x}=0. 

Evidently, y = s#rr and x = (1 - sl )/( 1 - s2) and a comparison of (2.15) and (2.17) 
shows that we have a homomorphism L : H3( W/G’)+R such that: 

t(s) == f(s) - n2/6 = -f(l -s), o<sc 1. 

We get the desired conclusions through the functional equation (2.6). Cl 

We will now relate these results to the homology of SLi,2, I?). From Proposition 
1.9, the chain complex C,(W) has the integral homology of a circle. We therefore 
have the exact sequences (set C;( W) = Ci): 

(2.18) O-Q!, ‘C, -+C[j -+z-+o, 

(2.19) c1-+Bpz~+z-+o, 

(2.20) ..‘-q+Z -+c,,+ , +*9--q -+c2 -+4 -4. 

We note that (2.20) is a zSL(2, R)-free resolution of B,. It follows thz,.;: 

(2.21) Ho(SL(2, R), B,)sz and Hi(SL(2, IR), B,)GHi+,(kV/C”), i>O. 

We can use (2. II 8) to get a spectral sequence converging to the homology of SL(2, IR). 
The “E ‘,i-termis are all 0 for j > 2 and we have the rest below: 

Zr 8:~ z Hr(G,ZI) tJz(G, Z,) l ** H,(Gv Z,) 

(2.22) z A!-(A) A;(A) l ** A>(A) d’ 

z $(A) d(A) ‘.. &(A) 

.JUSP a: in (2.111, d’ :“E;f, +“E,fo is (-l)‘- 1, i 10. Thus, it is alternately zero and bi- 
jective because A’_(A) is a Q-vector space for i >O. (2.19) yields the long homology 
exact sequence: 

(2.23) 
..” -+H,(SL(Z, IQ), tJ, )-+H,(SL(2, R), Z,)--W,(SL(2, IR), n) 

-+H,_ I(SL(2, R), B,)--+... , id. 

Since H,(SL(2, R), Z) = 0, we can conclude from (2.23) and (2.21) that: 

(2.24) Z, @;&? G zi’ and d’ : ZI aPG E-G? is surjective. 
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The exact sequence (2.19) arose from the l-dimensional homology of the circle. We 
can split (2.19) as free abelian groups by the choice of a fundamental cycle: 

(2.25) c%~2)1 = c *5i<J wi* (-aU-% 
0 11 

w= 
( ) -1 0 * 

We note that a column vector is written as (:I so that the Weyl group element w 

corresponds to rotation through 1t/2 radians in the counter-clockwise direction. w 
inverts the subgroup A. We note that: 

(2.26) A fixes the fundamental 1 -cycle [S(R2)]. 

The map d’ : Hi(G, Z,)+H,(G, C,)%l&l)* (-=,O) is induced by the inclusion 
map on the coefficient groups. If c~/1’,(A)sH#l, H), then the inclusion of A into 
G together with (2.25) and (2.26) shows that we have 

(2.27) i : H&4. Z,)+f;(G, Z,), Hj(AP zf 1 1 Hi(As B,) LL Hi(A, Z)- 

d’ O 1 carries c@[S(lR2)] onto 2 n ((-l)‘+ 1). c@(-oo,O). This shows: 

(2.28) d’ : Hi(G, Z~)+/i&4) is surjective for i even, zero for i odd. 

We can display the “E:j terms: 

Z H, tG, Z,) ker2 ff,(G Z1) ker, ..a 

(2.29) 0 0 0 0 0 . . . d’ 

z 0 J&4) 0 L&A) -** 
i 

Here kerzj denotes the kernel of d’ in (2.28). 
The map d” : Ht(G, Z,)-+n&l) can be described. We compose it with the surjec- 

tive map q : U,(G, B,)-rHt<G, Z,) in (2.23). Using the isomorphism in (2.211, d2 0 g 

is simply d3 in (2.2). The map d3 can be determined as in DuPont-Sah 141. The 
necessary mo,difications are compiled in Appendix A. We merely summarize the 
results: 

w,(G,&) = H3( WIG”) 

(2.30) 

IV ~d3 

&fr) =2*(m(r-- I)), r> 1. 

W,(G, Z,) d? &(-N 

Since n&4) is a Q-vector space and H?( W/GS) is 2-divisible, the factor of 2 has 

no effect on the image of d2 or d3. Since H3( W/G”) is conjecturally a Q-vector 
space, there is presumably no problem with ker d’ 3 the factor of 2 is ignored. 

In the complex setting, d” was denoted by 1. The formula was first found by 
Bloch-Wigner (without the factor of 2) using a slightly different chain complex for 
PSL(2,Q see DuPont-Sah [4]. Indeed, a portion of the argument used in 
DuPont-Sah [4] involved showing that the alternation rules (2.5) through (2.7) were 
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consequencces of (2.4) in the complex case (where r is allowed to be any complex 
number other than 0 or 1). In the present case, we took advantage of the ordering 
in R and started with an alternating chain complex. 

We now read off (2.29) the exact sequences, G = SL(2, IF?): 

(2.3 1) O-+ VJ(G, Z)-,H,(G, Z,)~A~(A)~H*(G,Z)~~~O, 

(2.32) O-)HZ;+J(G, z)+Hzi+ t(Gv ~~)-*/1~‘*(A)~H~i+2(G,h)~kerzi~0, 
i> 1. 

We can combine (2.31) with part of (2.23): 

H,(G,E)=K,O(~)~Z+-1, -1) 

H (C B )= H (W/G”) I ‘I- 3 

(2.33) 

C---- _ -HI(G, Z)- Z,&,,;(A) svm -H&i, ~;-----c’-(1 

KY(R) is just the image of ,4:(A) under the ‘&-symbol’ map. It arises from the in- 
clusion of A into G. An examination of the spectral sequence terms displayed in 
(2.2) shows the known result that K!(R) is 4. just . H&, 2’). In fact, we have the _ 
t’ollouing exact sequence: 

The argument used in deriving (2.28) and (2.29) also shows that the vertical map 
from H2(G,Z) down to H,(G, B,) in (2.33) is zero on Ki(lR). The image of 
C’( - 9, - 1) in H,(G, B,) S-&( W/G’) can be explicitly determined, see Theorem 
3.24, and the homomorphism L of Proposition 2.14 can be used to show that 
,n. C’(_ 1, -. I ) is mapped into H, (G, B,) injectively. (2.30) shows that the image of 

C( - 1, -1) in H,(G, B,) lies in the kernel of A. We summarize this with the 
following: 



Third homology of X(2, R) made discrete 191 

2.35. Theorem. We have the following diagram of maps with exact row and 
column: 

0 

(2.36) HI(G,B,)z H,(W/G*) 

I I rt d’ 

O- &G, Z)- 
d2 

HI (G 2, ) -A$(A)=hi<G, Z)-H-0 

0 

Except for the explicit statement in Theorem 3.24 that the I&valued homomor- 
phism L on HI (G, B1) z H3( W/G”) is definitely nonzero on the image of c( - 1, - l), 
a more conceptual argument can be given as follows. 

We begin with the Hochschild-Serre spectral sequence assuciaied to (1.1). Its 
‘E&-terms are displayed below: 

0 . . . 
-1 d2 

(2.37) P o H~(G*HI(~~(G),E))~ l **,H,(C, H~(x~(G),Z)), . . . 

z 0 H2(Gg Ho(v(G), z,), 0.. 9 h,(G, Ho@,(G), Z)), . . . 

We note h rt P’,(nl(G),B)&iT~nl(G), j=O, 1 and y’(nl(G),Z)=O for j> 1. The 
spectrsr d ,uence simply exhibits the fact that K(G, 1) is homotopically a circle 
bundle over K(G, 1). 

Since H,(6, Z) = 0, we read off the exact sequences from (2.37): 

(2.38) 0-+H2(~,Z)-+H2(G,Z)+Z+0, 

(2.39) H,(G, 72) 
d2 

-H2(G,H,(q(G),Z))-+H3(~,Z)-+H3(G,Z)-+0. 

We recover from (2.38) the well-known result that H&h) is just the Q-vector 
space Kf( [R). We assert that: 

(2.40) the map d2 in (2.39) is the zero map. 
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Up to factors of; 2..powcr, we can deduce the result from Milnor [ 1 l] on the level 
aIf cohomology. Namely, the exact sequence (1.1) corresponds to an element 
C-E:’ N ‘(G, Z:“). If we ler PG = PSL(2. rr;l), then we have the exact sequence: 

(2.41) l-++I-+G--+PG+l. 

From Hoc\s;hild-Serre homology and cohomology spectral sequences, we have the 
exact seq: rices:: 

(2.42) 

(2.43) 

Actually, (2.43) follows from universal coefficient theorem together with the known 
structure of the terms in (2.42). It follows that a generator e of H’(PG,L) can be 
taken to be 2c because c generates H’(G,Z!). We note that c takes the value 0 OF 
A’!(C) and the value 1 on c(- I, - 1). 

A general theorem of Hochschild-Serre [6] shows that dZ in the cohomology 
spectral sequence associated to (1.1) is cup-product with c*. As a consequence, (2.4C I 
would follow from the vanishing of the square of c. This is the case as stated in 
Milnor [ 111. Actually, the assertion was made for e, but there is no difficulty ex- 
tending the argument to c. 

WC can also gi e the argument directly. Namely, it is eno:!crh to show that 

siirvivcs to ‘E? First recall that the part corresponding to KF(K?) is thr: image of 
H+1, .Y) under the inclusion map of ,4 into G. Now H+-l, Z) s&(A) and is 
gcncrattd by mapping the free abelian group H’ into ‘4. This corresponds to mapp- 
ing a 2-torus into B(G, 1) through B(A, 1~. Since the exact Erc(uence (1.1) splits on 
the subgroup A, any such homomorphism of E’ into A can be viewed as the 
restriction of a homomorphism of Z. x Z’ into Z x,4 to the second factor with the 
first factor equal to the identity map of Z. This translates into the statement that 
the K!(p) part of H?(G, Hl(nl(G),Z)) lifts to elements of lf_&,Z). We ne-ii prove 
that (‘(-- 1, -- 1) also survives to ‘Ea. For this, we follow Milnor [9]. Consider a com- 
pact Riemann surface . // of genus g> 1. Its fundamental group n, (. fl) can 
t hcrcforc be faithfully realized (in many ways) in PC as a cocompact dis:rete group. 
I! i ( fl I\ PC can then be identified with the canonical unit tangent bundle over . N. 

?h fundamental group of this unit tangent bundle then satisfies the central exact 
sc’clucnce: 

(2.44) o-+_” -+ii,( +-vt,(. lf)-‘1. 

If U, , h!, I s i 5 g, are the usual generators of n l ( 4) with the single defining rela- 
tion: ] 1: [a,, h,] - 1, then the generator of Z in (2.44) can be taken to be n, [tii, 6;] 
~cl~re (7,./T, are arbitrary representatives of CI,, b, respectively. The realization of 
n,: /f ) in PG then lifts to a homomorphism of ii& fi) into G and the generator of 
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Z in (2.44) is then mapped onto the (2 - 2g)-th power of the generator of xr(PG), 
or to the (1 -g)-th multiple of the element denoted by c(- 1, - 1). This group 
homomorphism corresponds tq> a homotopy class of maps of the unit tangent bun- 
ule of .A? into B(G, 1). We have the induced map on the third integral homology. 
We get a lift of c(- 1, - 1) when .M is chosen to have genus 2. (The gist of this argu- 
ment was worked out during a conversation with A.T. Vasquez.) 

With (2.40) at hand, we can fit (2.39) into (2.36) using (2.34). We need to check 
the commutativity of various maps. This will be left to the careful reader. 

As shown in Theorem 3.24, there are homomorphisms: 

(2.45) 
A : H,(G, B,)rH3( W/G")+&R+), A(r) =rA(r- I), r>l. 

L : H&G, B,)sH3( W/Gd)-+lR, L as in Proposition 2.14. 

A is 0 on the image of ci-!, -1) and is just dZ in (2.36) up to a factor a power of 
2. Thus A is 0 on the image of H3(C, Z) when we factor it through H,(G, 2,). We 
can view 1 as the analogue of the Dehn invariant, see DuPont-Sah 141. L takes on 
the value +2 9 271’ on the image of ~(-1, -1). The ambiguity of + 1 comes about 
because we have not kept tract of the sign in tracking down our higher differential. 
The first factor of 2 can be seen from the fact that SL(2, IR) doubly covers PSL(2, IR), 
compare (3.17). The corstant 27t2 is the 3-dimensional volume of the 3-sphere of 
radius 1. We can therefore view L as the analogue of the volume invariant in hyper- 
bolic 3-space, see DuPont-Sah [4]. In analogy with the yet to be resolved Hilbert 
third problem in hyperbolic space, it appears reasonable to ask: 

(2.46) Do 1 and L separate the points of H3( W/G”)? 

The conjectured Q-vector space structure on H3( W/GS) would follow from ((2.46) 
together with p-divisibility of Hj( W/G”) for all odd primes p. We note that 
HJ(G, Z) is known to have a Q/Z_direct summand coming from the inclusion of 
finite cyclic groups into the suagroup SO(2, I?), compare DuPont-Sah (41. Diagram 
(2.36) clearly points out the compatibility of the conjecture concerning the structure 
of H3(G, Z). Since A{ 2) =0 and d2 has kernel H1(SL(2, lR),Z), (2.46) is equivalent 
with (compare (3.37)): 

(2.47) 1s Lred : H3(SL(2, !R), i2)-+lR/47& injective? 

3. Determination of the image of c(- 1, - 1) 

We begin with the review of known results that are more or less scattered and 
usually presented in somewhat different forms. 

Consider a presentation of an abstract group r in the form of an exact sequence: 

(3.0 !-R+F(S)--kW. 
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Here F(S) is the fr/:e group based on the set S. Given any element in F(S): 

(3.2) ‘W = n #“, &(i3= +l and s(i)&, lricn, 

we define th,e exponential sum with respect to s E S by the formcla: 

(3.3) qW) = C E(i). 
s(i) =s 

We also deiine pi(w) by the formula: 

(3.4) pi(w)= fl S(j)&(j), 1 rjsn, PO(w)= 1, P,(W)= w. 
jsi 

3.5. Proposition. Suppose that the element w given in (3.2) has zero exponential 
sum with respect to each s in S and that y(w) = 1. Equivalently, we R n [F(S), F(S)]. 
!Set y, = y( p,( w)). Then, 

(a) The 2-chain: 

C(W) = C WtYi- (E(i) t I)/2 1 Y@(i))1 
lrrsn 

represents a 2-cycle in the nonhomogeneous bar formulation oj the 
Eilenberg-MacLarre space BT= B(T, 1). 

(b) When r= I& g L I, is the fundamental group of n compact surface of genus 
g with generators ai, bi, 15 i sg, and the singie defining relation Y = 9 i [ai, bi] (i.e., 
R is the normal subgroup generated by w), then c(w) represents a ge,rerator of 
H,(T,,Z) E Z!. 

Remark. c(w) i,s irivariant under insertion of a. a-’ and changes by 3 boundary 
under conjugation of w. 

Proof. The boundary of c(w) is just the element: 

1 E(i)[Y(S(i))l - C [Vi1 + C [Yi- *I* 
larcn lsisn Isisn 

It is therefore 0 from the assumption on exponential sum. The assumption that 
v(w) = f is needed to obtain the precise form of the last two sums in order to get 
cancellation. We note that y. = Y,, = 1 so that the terms corresponding to i=O and 
n may become 0 independently through the normalization of the nonhomogeneous 
formulation. We therefore have (a). 

The proof of (b) is essentially contained in Milnor [9]. When g z= 1, 

c(w) = [v(a) 1 y(b)1 - [r(b) ] r(a)1 

is well-known to represent a generator oi’ H,(Z’, Z), compare Sah [ 131. For g> 1, 
we may geometrically realize I’Yg as the fundamental group of a compact Riemann 
surface of genus g, for example, a hyperelliptic curve defined by 

Y’= n (X-i). 
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The 2-chain can be seen to be a decomposition of the classical 4g-sided fundamental 
polygon in the hyperbolic plane. More precisely, the Riemann surface is a model of 
K(&, 1) with universal co*lering space equal to the hyperbolic plane. The 2-chain 
c(w) corresponding to the defining relation exhibited projects bijectively to a cell 
decomposition of the fundamental 2-cycle on the Riemann surface. Since C(W) is a 
2-cycle in &(&, Z) z Z, it must correspond to a generator. ‘We note that the iden- 
tification of &(&,a) with Z in the present argument used the uniformization 
theorem in complex analysis and basic facts of gvoup homology. Cl 

The preceding argument can be reorganized in the following form: Let us form 
the following c act sequence of gro:rps: 

(3.6) ~+E=(z)+=?~-+r~-+l. 

rg is defined by generators cli, 6i, 15 i 2.g and z with defining relations: 

Since (3.6) is now a central extension, the elem.-nt z is independent of the choice of 
the representatives tii, gi chosen in IL covering the generators ai, bi \ f rg. r1 is 
usually called the Heisenberg group. In G, let the center be generated by t so that 
I’ = c(- 1, - 1) in the multiplicative notation. For any homomorphism f of & into 
PSL(2, IR), we can define a homomorphism $ of rg into C? by mapping the 
generators dig 6i into arbitrary representatives of f(ai), f(bi) in G. The element 3(z) 
must then be a power, cdf) of t. The exponent c(f) depends only on f and will be 
called the Chern number of f. When f’, g> 1, is mapped by f onto the funda- 
mental group of a compact Riemann surface of genus g (realized as a conjugacy 
class 0” torsionfree Fuchsian groups of the first kind), then the results in Milnor [9] 
show that c(f) = 2 - 2g is simply the Euler characteristic of the Riemann surface. In 
general, c(f) is the first Chern number of the flat 2-plane bundle defined by f. 

Remark. In passing, it should be noted that extensions of the preceding result have 
appeared in many, many disguises. An amusing historical account can be found in 
a fort1 coming paper of Kra [7]. 

We row proceed to the determination of the image of c(- 1, -1) in HJG, &)z 
N,( W/CT”:). We first describe G following Milnor [lo], or Steinberg [17]. The 
I-paramctter group eij(t), te ?, in SL(2, [R), (i, j) = (1,2) or (2, I), is covered by the 
l-parameter group .Y,#) in! G. Since ll? is divisible and n,(G)z .Z, these liftings are 
absolutely unique. According to Milnor [lo, $101, c(- 1, - 1) is just (.u~~x~~‘s,~)~ with 
x0 =a+(l). We note that xlZ. K,’ . xl2 has image equal to the Weyl element w in 
SL(2, tR): 

0 1 

1, = ( -1 0 1 
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Since c( - 1, - 1) lies In the center of 6, we can con ,;.gate x,~.~~~‘x~~ at will in 6 We 
let h(a), afz R’, be the l-parameter subgroup of G covering the diagonal subgroup 
,4 of SL(2, JR) so ?hat h(u) maps onto the diagonal matrix 

ab= 1, a, b>O. 

Again the divisibility of A shows that this lift is absolutely unique. We now note 
the identities in SL(2, IR): 

[e,,(s), WI = e2&- (1 - am2)), sin IR, ain lR+, 
(3.7) 

Ma), e1~(t)l= q 2V 9 (a2 - Uh tin IR, ain lR+. 

It follows that the same identities are valid in G when eij is replaced by xij. Notice 
that we have used the fact that z contains only the trivial divisible subgroup in an 
essential way. Direct consequence of (3.7) is: 

(3.8) 

e&‘e$ = [ezl (--2), h(Z”“)] l jh(2’ I’), e12(2’I] 

= e$ - [h(2”?), e$ ef2] l e& 

= et? l [e$?e& h(2”‘2 )] l 4;22, eij =eti(!). 

ei, l ef2 = 
1 2 ( > 2 5 

in SL(2, IR). 

We can t hlerefore conclude that: 

(3.9) c( - 1, - 1) = [h(2 1 ’ 7 ’ 4 -), x;,_u+] 

This means that we can map rd into d 
h(2’ ‘), ril . e& lsis4, and with 
C(- 1, -1). 

so that a;, 6, are mapped respectively onto 
a generator of Hz(I&k) mapped onto 

We now go back to the vertical part of (2.33). We need to find a 2-chain of G 
with coefficient in 2, so that it projects onto a 2-cycle representng c(- 1, - 1). We 
use the idea conuected with (2.25). Set: 

(3.10) 
1 

M’() = h(2 ’ q, 
‘1 2 

I t )I 25’ 
1~~) conjugate to u’ in SL(2,R). 

It follows that wg has order 4 and (2.19) can be split as abelian groups by using the 
following fundamental 1 -cycle: 

(3.11) C w8rA s= w&Q, -oo(r<m 
Oc_lSI 

What follows is the standard ‘staircase’ argument in tracing down higher differen- 
tial\ in a spectral sequence associated to a double complex. 

The relevant 2-chain of (G, Z,) projecting onto a 2-cycle of (G, z) representing 
I he same class as c’( - 1, - 1) can be taken to be: 
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x- c ([w,x 1 VI- Iw;Y 14 + b& 1 xl - I& 1 YIN3 c w;(r, a, 
i i 

(3. i2) 
Osir3, x=&2’“), y= ’ 2 ( > 2 5’ 

The first group of 16 terms in (3.12) comes from (a) of Proposition 3.5 by using 
the map described after (3.9). Using xy = woyx, wi = 1, (iI& 1) l X is easily com- 
puted and we obtain 

(3.13) 4[xlo(Y-’ - 1) c w&,S)-44[y]@(x-‘- 1) c w&,&s). 
i I 

We remind ourselves that the tensor product in (3.13) is over ZG. As a direct check, 
using x-‘y-l =y-lx-’ ru,, wi = 1, (3.13) is a 1 -cycle of G with coefficient in 2,. 
However, G acts trivially on Z z 2, /Br , thus the second factors in the two terms of 
(3.13) are actually in B, so that (3.13) is really a l-cycle of (G, B,). Note that we are 
free to choose the ray r to simplify our task. 

In order to keep track of the steps, we assume that 2-chains in Cz( IV), say Y(y) 
and Y(x), have been found so that a, maps them onto (y-l - 1). C, WA@, s) and 
(x-l - 1) l C, w&, s) respectively. We then apply a& 1 to 4[x]@ Y(y) - 4[y]@ Y(x) 
to get: 

(3.14) 4* 2, Z=(x-I- 1) Y(y)-(y-l- 1) Y(X)EC#V). 

We are assured (and it can be checked directly) that a,Z=O so that the vanishing 
of the higher homology groups of W (above dimension 1) implies: 

(3.15) z=&& &C,(W). 

The ctass of U in &( IV/G”) is then the desired image of c(- 1, - 1). We note that 
we have not bothered keeping track of signs of +l so that a more precise statement 
is that the class of U in &( w/G’) is the image of +c(-1, -1). 

We now select r to be the ray w. We will abbreviate the ray F?‘(i) to y/x and 
note that -y/-x is the ray y/x rotated through a half circle. It is then straightfor- 
ward to check that the following choices will work: 

Y(x) = (-00,3/10,3/5) - (3/10,3/5,00) + (00, -3/- 10, -31-S) 

-(-3/-10, -3/-5, --a), 

(3.16) _ Y( v)=(-0% -5/2,3/5) - (- 5/2,3/s, 5/- 1) - (3/5,-, 5/- 1) 

+ (0% 5/- 1,5/--2) + (03,5/-2, -3/5) - (S/-2, -3/-5, -5i- 1) 

- (-3/--5, -00, -5/l) i- (-00, -5/l, -S/2). 

We note that the first half of Y(x) and Y(y) are equal to the corresponding second 
half throllgh 180” rotation (or application of -Id in SL(2, IF)). 

There 1s no difficulty computing Z of (3.14) from (3.16). With a little bit of 
patience, U can be found in the form: 
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(3.17) 

JV~ = -Id E SL(2, IR) where 

v= -( -00, -5/4,3/10,3/5) - (-00, -5/2, -S/4,3/5) 

--(-5!4,3/10,5/- 1,5/--2) - (-5/4,3/10,3/5,5/- 1) 

-(-5/2, -5/4,3/5,5/- 1) - (3/10,00,5/- 1,5/-2) 

+(3 ‘10,3/5, O”j 5/- 1)” 

We must now compute the cross-ratio symbols of the 3-cells appearing in (3.17). 
Since we are now dealing with C?( IV/G”), we only have to multiply these answers 
by 8 to get the image of c(- 1, - 1). Note that 8 comes from the 4 in (3.14) and the 
2 in the expression for U in terms of V. 

The calculations are now straightforward. We have: 

3.18. Proposition. The image of c(- 1, -~)E&(G,Z) in H,(G, B,)zHJ(W/G*) 
can be represented by 8 l v where v is the class of the following sum of cross-ratio 
.yvr~rbols (up to a *factor of -t 1): 

-(37/31}-{2*31/5~}-(2’~3*7/53)-{37~53/32~5’] 

-{3.31/37} - (53/22- 7) + {2’* 7153). 

The rather strange looking prime numbers appearing in Proposition 3.18 are not 
very significant. The chain V in (3.17) is not unique; only its class v in Hjl; WIGS) 
is. Indeed, (2.4) can be used to simplify the expression in Proposition .‘,.18. 

Using rI = 37131, r2 = 3, we have 

(3.19) -{3V31)-(3~31/37}=-{3}-(31/3}+{37/32} in H,(W/G”). 

Using r, = 2’. 7/53, r2 =2’*397/53, we have 

(3.20) 
(rn-’ l 7/53) - (22 l 3 l 7/53) = -{3/2} + (3113) - {2* 31/32} 

in H,( W/G”). 

Using rl =2*31/53, r,=2*31/5’, we have 

(3.21) 
-{37~53/3~~5~}-{2~31/5~)=-{37/3~}-~53/5~}-(2~31~53} 

in H?( W/G”). 

It follows that: 

(3.22) 
v=-~3/1}-{3/2)-(2~31/32}-{2~31/53}-(53/2~~7}-{53/52} 

in H,( W/G”). 

Using (2.6) and (2.10), we see that: 

(3.23) I) - --6(Z) in H,( W/G&). 
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3.24. Theorem. Let ;1: H3( W/G*)+A:(m’) denote the homomorphism with 
A(r) =rA(r - I), r > 1 and let L : H3( W/G*)-*lR denote the homomorphism de- 
fined in Proposition 2.14. Then the image of ~(-1, - 1) in H1(G, B,)zH,( W/G*) 
is in the kernel of A and is mapped by L to 48 8 n2/12 = 2. 2n2. In particular, the 
image of h l c(- 1, - 1) in H, (G, B1) is the infinite cyclic subgroigp generated by 
48*{2). 

As mentioned before, H3( W/G*) is conjecturally a Q-vector space. With the 
determination of the image of ~(-1, -I) at hand, we will show that H3( W/Gb) 
contains a direct summand isomorphic to Q and this summand can be selected to 
contain the image of ~(-1, - 1). The uniqueness of this summand would depend on 
the absence of torsion in H3( W/G”) (actually, it depends only on the absence of 
torsion of the for,m Q/Z). We accomplish this by using the known torsion in 
H,(SL(2, IR), Z) arising from the finite subgroups of SL(2, IR). It is evident that all 
such finite subgroups of SL(2, IT?) are conjugate to subgroups of SO(2, IR), hence 
must be cyclic. 

The following result is known but does not seem to be recorded in any readily 
available reference: 

3.25. Proposition. Let Z, be a finite cyclic group generated by g. For any integer 
j 10, Hlj+ l(Z,,, ?l’) z Unz and a generator can be chosen to be the class 
represented by the following (2j + 1 )-cyck: 

(3.26) C [gIg’(*‘(gl .** /g’(j)Ig], Oli(s)Sn- 1, 1 IsSj. 

Proof. We know that Hzj+I(Zn,Z)EHzj+2( Z,,Z/niZ) via the connecting 
homomorphism associated to the coefficient sequence: 

(3.27) O+F-+iZ+Unif~O. 

In particular, (3.26) arises from the following modn (2j+ 2)-cycle: 

(3.28) C [g’(O)lgl 9.. Ig”’ 1~1, Oli(s&n- 1, Olulj. 

This sequence (3.27) corresponds to a 2-cocycle to (Z,,, Z): 

(3.29) f(gS9gf) = 
0, if OSs+t<n, 

1, if nIs+t<2n, 
03, ten. 

The cup product of j+ 1 factors off then takes on the value 1 on the mod ,q (2j+ 2)- 
cycle in (3.28). This shows that the classes of (3.26), (3.28) and (3.29) are generators 
of order n in the respective grouys. •J 

3.30. Proposition. Let g be an element of finite order n > 2 in SL(2, IR). The class 
of the generator from (3.26) is then mapped onto the class of the folio wing 1 -cycle 

of (G, Z,) (compare (2.25)): 

(3.31) c(g) = - kl0 C gj(r, 3), Olj<n, s=g(r), -aoor<ax 
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if g = h” for some integer m 11, then 

(3.32) c’(g) is homologous to 172. c(h). 

Proof. We carry out the staircase argument in the spectral sequence (2.22) related 
to (2.18). ln the double complex, the chain group in dimension 3 is 

_~~(G)~~GCO(W)UCZ(G)OL”GCIIW)UC,(G)OEGZ,. 

We view the 3-cycle in (3.26) as a J-cycle of (G,7) and cover it by the 3-chain 
1, [g i g’ 1 g]@(r). Applying a& 1 gives 

(3.33) 1 k’ j&md - IW). 

We need a l-chain in C,( Wj with boundary (g-l - I)(r). Since n>2, the l-chain 
(t;g I(Y)) = -(g -‘(r),~) does the job. More generally, when g= h”, we can use 
2, h ‘(r,h l(r)), O~j<nt. We then apply a,@1 again to the following element of 
CT(G)@-(; C,:N’): 

This gives the following element of CI(G)@,-(; Z,: 

The eletnent represented by (3.34) is a l-cycle of (G, Z,) whose class in ?fI(G, Z,) 
is then the image of the class represented by (3.26). c(g) in (3.31) is ther. the result 
~,f taking X, to bt -(g-‘(s), s) with s=g(r). (3.32) follows by taking X1 = 
\‘ _,,_ ,_ ii, - h ,‘(h l(s), sf with s= h(r), and noting that X, is no’.; h-invariant and 
[h”‘) -= [g] is homologous to m[h] for trivial coefficients. U 

3.35. Theorem. H3( W/G”)sQ(Z} U2-divisible group. 

Proof. As g ranges over the elements of finite order nr2 in SO(2, R), the classes 
in H,(G, Z,) arising as the images of the etements of order n form a subgroup of 
H,(G, Z1 1. The compatibility argument described in the proof of Proposition 3.30 
and the argument beIow imply that we have an injectiotr of Q/Z into W,(G, Z,) 
through H,(SL(Z, R),B). 

N’c consider the special case of n =4. The element a can be taken to be the con- 
jugate \I*,, of the Weyl group element u’. c( wg) is: 

-- I y,l 0 c ~~$k 9, s = w&h --oocr<s. 
05.rc.l 

M’e will now determine the preimage of the class of c(u’~) in H, (G, 8,) or 
II,(H’J’G”). We are now forced to trace through the exact sequence (2.23) 
;i\sc!ciated to (2.19). WC already know that wo= [A-, _Y] as in (3.10). It follows that 
c*( IVY,) is homologous to: 
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(3.36) [xl mu-’ - 1) c I&&~ [y]@(x-l- 1). c w&s). 
i i 

To obtain this conclusion, we simply compute the boundary of 

([wg I YXI - 1x1 Yl + [Y Im3 c wk(r, s)* 
i 

We need to recall that the tensor product is over ZG and the second factor is 
w,-invariant together with the fact that woyx=xy. 

A comparison of (3.36) and (3.13) shows that the image of c(- 1, -1) in 
H,(G, 2,) is precisely 4 times a particular preimage of c(w). Using the homomor- 
phism L defined on HJ( W/G”), this shows that the preimages of the classes c(g) as 
g ranges over elements of finite order greater than 2 in SO(2, IR) defines a subgroup 
of H3( W/G”) isomorphic to Q and contains the image of c(- 1, - 1). The quotient 
group is isomorphic to Q/Z and is identified with the torsion of H,(SL(2, IR), Z) 
arising from the finite subgroups of SL(2, IR). Since the image of c(- 1, - 1) is 
+48{2}, we get the desired assertion using the injectivity (=divisibility) of Q and 
Proposition 2.14. 0 

Remarks. In DuPont-Sah 141, the existence of the Q/Z direct summand 111 
H3(SL(2, IR), Z) arising from the finite cyclic groups was derived using a variation 
of invariants found by Cheeger-Simons. The present argument bypasses some of the 
differential geometric ideas used. However, the use of Rogers’ L-function is really 
nothing more than the Cheeger-Simons invariant in disguise. 

In this connection, it should be noted that the argument used in pinpointing the 
image of c(- 1, - 1) can be repeated to obtain preimages of c(g) for rt > 2. It would 
then allow us to write 48( 2) as integral linear combinations of other cross-ratio 
symbols {r}. A little bit of thought shows that these r’s can be taken to be algebraic 
numbers in ‘R. Moreover, the coefficients can be arranged to have arbitrarily large 
integers as common divisors. This suggests some sort of analogue of the distribution 
relation found in DuPont-Sah (4). We hope to return to this question elsewhere. 

In view of the determir@ion of L on the image of c(- 1, -I), we have a 
homomorphism; 

(3.37) &j : H,(G, Z,)NR/4d l it 

Its restriction t 8 the image of H3(G,Z) then determines an element Lred E 
H”(SL(2, m), lR/4n2* Z). As pointed out in Gelfand-MacPherson 151, such an 
element has already been found by David Wigner [ 181. There is a difference of a 
factor of 4 that comes about because Wigner’s approach as outlined in Gelfand- 
MacPherson [S], see also BRoch [2], used the action of SL(2, IR) on lP’(lR) while our 
approach uses the double cover of [P’(R). Moreover, Wigrler’s element is defined 
through the use of continuous cohomology theory and measurable cochains. By 
comparison, our approach is more elementary and it does not seem clear how to 
relate Lred directly to the first Pontrjagin class at this point. 
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Appendix A 

We carry out the necessary modification of the calculations made in DuPont-Sah 
[4] in order to account for the difference between SL(2, IR) acting on the rays in R* 
and PSL(2,43) acting on the points of P’(Q=). We note first that --oo % r < = only 
parametrize .lalf of the rays. The other half requires the application of -Id. The 
cross-ratio symbol (r} stands for (-~,O,l,r) in C3(W/GS), -==r<= and the 
latter satisfies the ahernating rules (2.5) through (2.7). 

In DuPont-Sah [4], C,b”‘(G, M) was the ‘standard’ normalized nonhomogeneous 
complex for G with coefficients in a left G-module M written in the form where 
C,ba’(G, M) is generated by symbols: 

[g1( *** I g,k gj in G, x in M; 
and 

l)‘[g] ( l ‘* (gigi+ 1 I “* I &J 

These translate to our present C,(G)&+ under the correspondence sending 
[g, i I_ IRY]Y to [g;’ I .=. Igr’]@x and & to &@IdM. 

A:, in Dbpont-Sah (41, we have the following diagram of maps: 

a,, 
H,(G, Z,): Hl(G, B,) 

i 
H,(G, C&----+ -H,(G, Z,)-- 0 

II 

(A. 0 &W/G”) d’ 

Here i and p are induced by inclusion on coefficients and projection on groups 
respectively. Splicing together (2.19) and (2.20), I oaMr is really just d2 in another 
spectral sequence. The kernel of i can be independently determined (see Theorem 
3.24) and the kernel of d’ in (A. 1) is known to be the image of H3(G,Z) in 
II,(G,Z1 ). It is therefore enough to know the composition of the maps from 
H,,(G, C,) co &A). This composition was determined in DuPont-Sah [4] for 
W-(2,0 acting on an acyclic chain complex based on distinct points of @(G). In 
that setting, the composition is simply d-‘. For the present setting, we have SL(2, IT?) 
acting on a chain complex with the integral homology of a circle. 

We first reca!! the rqgn n frem .--v .L w..y cf rlulll Dupont-Sah [4]. Let ’ : G *G denote any sec- 
tion to the projection map 

G-+G/AN=S(R2)zK=S0(2,1R). 

For .Y~, . . . , .‘i;, y in G, let zj=Xj+ 1 *** .‘iy. y, Olj 5 4. Then Q can be seen to be 
determined by the chain map (also denoted by Q): 
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We now begin with r> 1 in iR and obtain 

&V(r) =(Q l,r)-(- cQ,l,r)+(-Q),4r)-(--~,Q 1) 

(A.31 =(9,-g2+g3-l)(-00,0,1)=a,x, 

where Xl = &$ Is& -~,41)-[931’(-~,0,1)* 

Since C2( W) is ZG-free with (-=,O, 1) as a generator, gl ,g2 and g3 are uniquely 
determined. However, X1 is not unique. In order to simplify our notation, we note 
that GL+(2, IR)~ SL(2, IT?) x Ii?+ 4 Id and II? Q Id acts triviaIly on the space S(IR*) of 
rays in lR2. This allows us to represent elements of G = SL(2, R) by matrices in 
GL+(2, IR). In particular, we have 

We next have 

The determination of X, is formal and uses the following easily checked equalities 
(in GL+(2,lR)/R’ - Ids SL(2, R) as in DuPont-Sah 143): 

g;‘g;k,g*= (y ‘1 ;), 

In order to end up in n:(A), we need to apply a, to X2 in (AS) and go through 
(A.2). We first note that 8,X, has 16 terms of the form: 

[A ( YlZ(--0019 x, y and z E G = SL(2, IR). 

According to (A.2), the Q image of such an element has the form: 

[a* b-1 jh*c-‘1, a = (x$2>- ’ * xyz, b==(_Jw*yz, 

CZ.p.& ~,#?-J,CEAN. 
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It is straightforward to check that each of the 16 terms has the property that xyz, 
_vz and t all map --00 into the set consisting of - 00, 0, 1, r. We note that (0) = w( - a), 
w = ( _!)I A) is the Weyl group element. We can therefore select the section * : G +G 

to the projection G *G/AN so as to satisfy: 

f-1 
I 

9 if g(-a+(-00), 

J w, 
(A.7) & 

if &a)=(O), 

1 
g> M’, if g(-4=(l), 

L &5 if g(-m)=(r), 1 <rem. 

Wt note that (A.7) is only a partial section. It can be arbitrarily completed to a 
se&on. In view of the remarks already made, the computation as indicated depends 
onl;b on (A.7) and does not depend how this partial section is completed. Now (A.7) 
is precisely the choice made in DuPont-Sah [4]. The rest of the arguments proceed 
just as in DuPont-Sah where the rat her messy calculation as indicated in (A.2) is 
aga:l!n omitted. The result is that the image of (r} in &A) is simply 2 l rA(r- l), 
r> !I in R. We note that the expression in DuPont-Sah was written in the form of 
2 l ZA(I - 2) in order to point out the connection with the defining relation for K2 
of ;i field. The factor of -1 is absorbed because both 2’ 2nd CX are divisible 
groups. 

Remark. The section selected for (A.7) could just as well be selected kly using 
lwasawa decomposition. However, the resulting element appears more dXficult to 
identify in the group nf (A). 

Appendix B 

We illustrate a result similar to the one sketched by Jeff Cheeger in his 1974 talk 
at the Vancouver congress. 

Bl. Proposition. Both H’,(SL(Z, IF’), Z) cm! H3(SL(2, C)), I.) contain free ubeliun 

sritqr-wps of cwtr~tuhle infinite rank. 

Proof. We begin with the Artin-Schreier polynomials: 

P’- X- 1, p a prime >3. 

Reading this polynomial over F,, we conclude that it is irreducible over Q so that 
it has p distinct roots in C. Since its derivative has two distinct real roots, each such 
polynomial can have at most three distinct real roots. Evidently, the largest real root 
I’,,, i\ \tric’tly grcwr than 1 md has at least /I- 3 > 0 nonreal conjugates. We con- 

kkr t hc cross-ratio symbol (I;‘: ’ ). We have 
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Since A is just d20 q up to a factor of 2 in Theorem 2.35, q{r$‘- * > represents an 
element yP in &(SL(2, I?), Z). We assert: 

(B2) 

The natural map of Hj(SL(2, I?), Z!) into M,(SL(2, C), Z) maps yP 
onto the free generators of a free abelian subgroup of countably 
infinite rank, p a prime >3. 

To see (B2), we recall the results in DuPont-Sah [4]. There the abelian group ,+ 
was defined by the generators {t), z E a3 - { 0, 1 }, with the defining relations cor- 
responding to (2.4) without the restrictions on rl, r2. Similarly, the map A is defined 
on .flC and the kernel of il is the quotient of H3(SL(2, C),Z) modulo the trivial 
torsion subgroup Q/Z arising from the finite cyclic subgroups of SL(2, Q. We note 
that Aut(C/Q) operates on .S, and that the complex version D of the dilogarithm 
defines a group homomorphism on :S, so that D(Z) is simply the volume of the 
totally asymptotic 3-simplex in the extended hyperbolic 3-space with vertices on the 
boundary 0 ’ = lP*(C) given by 00, 0, 1, Z. This volume is 0 when z is real and 
nonzero when z is not real (and is positive or negative in accordance with the 
orient at ion). 

Let k, denote the algeuraic number field generated by r, over Q with p ranging 
over the first n primes greater than 3. Since each rp has degree p over Q, the degree 
of k,, over Q must be a multiple of each such p. It follows that the degree of k. 
over Q is precisely ]], 1,5,, p(i) and Q,(~) has degree p(n) over k,, _ l. In particuh_r, 
J+/,(,~) has nonreal conjugates over the real field k,l _ 1. We can therefore find c;‘,, in 
Aut(C/Q) such that on is the identity on k,,_ 1 but a,#;:;- ‘) is not real because 

T/1(,,) and r;;,;; - * generate the same field of degree p(n) over Q. It follows &hat 
the homomorphism D 0 a,, is 0 on { $,‘- ’ ) for p =p(i), 1~ i < n, and not 0 on 

{ ri$)- ’ } . This gives the independence of yy with p ranging over primes greater 
than 3. Since r, is real, the symbol {I;“- ’ } can be interpreted either in HJ( W/G”) 
or in .$ and yc, can be interpreted either in H3(SL(2, R), Z) or HJ(SL(2, C), E). EJ 

Remark. Outside of the trivial torsion Q/Z, we do not know the exact kernel of the 
homomorphism from H3(SL(2, lR),Z) to H3(SL(2, C),Z). It can be seen that the 
natural homomorphism from H3( W/G”) to Yc has kernel containing Q{2} and the 
image is known to be quite far from the fixed points of the complex conjugation 
map on Yc. Proposition Bl shows that the image is nevertheless quite large. Com- 
pare DuPont-Sah [4]. 

Actually, r, is the unique real root of the Artin-Schreier polynomial exhibited as 
long as p is an odd prime. Other algebriac numbers can also be found with similar 
properties. r2 is the golden ratio and leads to S-torsion in H,(SL(2, IR), Z). Wz do 
not know much about L(r,P- ’ }, p odd prime. In view of (2.46), it seems 
reasonable to conjecture that they are Q-linearly independent. 
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Appendix C 

As indicated in DuPont-Sah [4], the distinct point complex based on the projec- 
tive line @(F) over an arbitrary field F was first used by Bloch-Wigner (in un- 
published private notes) to study the homology of PGL(2,F). Questions involving 
2-torsion were bypassed through the use of coefficient rings containing 2 as a unit. 
This apprc ;h is evidently ‘functorial’ in F. When F= IR, we have the following 
exact sequence: 

(C-1) 

Here SL’(2, IR) is determined by the split exact sequence: 

K.2) 1 -+sL(2,lR)+sL’(2, rn) 2 -tl -*I. 

Our alternating chain complex C* may be truncated through the replacement of 
C, by aC+ The action of SL(2, IR) on this truncated complex can then be extended 
to the group SL’(2, II?) in the obvious manner provided that both Co and H are 
twisted by the determinant action through (C.2). However, this twisting of the co- 
efficient group can cause drastic changes in the corresponding homology groups. In 
order to compare our results with the results in Dupont-Sah [4], we need to consider 
the distinct point complex based on I?‘( IT?). Following ihc analysis of DuPont-Sah 
[3], it is quite easy to obtain the following exact sequence: 

(C.3) O-+ IF? --+Hj(PGL(2, [I;)))-+ .+, +/l;(k+)+Hz(PGL(2, I?))+ -%O. 

The first iFz in (C.3) is H#II) and the splitting map is provided by the projection 
of PGL(2, Ii?) onto -t 1 through (C.l) and (C.2). The second splitting map comes 
from the divisibility of k(lR’). 

The abelian group s 9, is defined by generators { {r} ), r E IR - (0,l) with defining 
relations (rl # rl lie in IR - { 0, 1)): 

(C.4) 
R(r,,~~)={{~,)>-{(~~)}+({~~/~~}}-(((l-~~,~(l- Q))} 

+ (((1 -I$‘)/(1 -1’1 ‘,}I. 

As shown in Dupont-Sah [4, Lemma 5.71, 7)l; is t-divisible. 

An examination of the HochschiId-Serrc spectral sequence associated to t hc split 
csact sequence: 

(Ccc) 
Jc‘t 

1 -+PSL(2, R)-+PGL(Z, R) ____3 +I-+1 

yields the following isomorphism and exact sequence: 

(C ‘6) Hz(PGL(2, 9) = H(,( -t 1, H?(PSL(2, m))), 

(C.7) IF, --+I,(+ 1, H,(PSL(2, R)))-+H,(PGL(2, fR))--+ff, --+O. 



Third homology of SL(2, I??) nade discrete 207 

As in Dupont-Sah (41, we can also 
associated to the exact sequence: 

the Hochschild-Serre spxt ral sequence 

(C-8) l3 A 1 +SL(2, rn)+PSL(2, R)+ 1. 

This then yields the exact sequences: 

(C.9) ))+&(PSL(2: IF?)]--+ IF* “0, 

The first map in (C.9) can be identified with multiplication by 2 on the group 
0 c(-- 1, - 1). Since K:(R) is the image of A;(lR’) with IF?+ identified with 

A and f 1 in (C.5) can be covered by diagonal matrices, it is immediate that + 1 acts 
trivially on K!(R). Since . c(- 1, - 1) corresponds to the fundamental group of 
KS SO(2) and f 1 can als e covered by (y A) inverting SO(2), it is clear that -t 1 

inverts l c(- 1, - 1). It follows that: 

(C.11) 

The subgroup U4Z in (C. IO) is mapped onto the subgroup of order 4 in 
&(SL(Z, R)) arising from the inclusion of the cyclic subgroup of order 4 generated 
by w = (!r A). see DuPont-Sah 141. It follows that (2.36) can be rephrased as the 

exact sequence: 

(C. 12) 04H;(PSL(2, m))-,‘~~S-‘/IH(~+)-*~~(IR)‘O 

Here .@Ts is the abelian group generated by the symbols ((r) 1, rE m, r > 1, with 
defining relations R(r,,r2) in (C.4) subject to the restrictit ns that 1 < rl <rz as in 
(2.4) and the additional relation of 12 . ( { 2) ) . 

(C.3) can be rephrased with the help of (C .7) and (C. 10) in :he form of the foliow- 
ing exact sequence: 

(C.13) O+im(H& 1, H,(PSL(2,lR))))+ .FR +A@?+)+K~(R)-+O. 

As shown in DuPont-Sah (4, Lemma 5.51, 12 l { { 2) ) represents 0 in I 9,. We 
therefore have a natural homomorphisin from .fl{’ to I 4, sending each generator 
((r)), 01, of .r Ts to the corresponding generator {{r}} of .+ 

C. 14. Theorem. JYte natural homomorphism from I 9:’ to ,Y, is an isomorph;sm. 
In particrrlar, H,(PSL(2, R))zH& 1, Hj(PSL(2, IF?))) under the natural Irap. ir 
other words, f 1 acts trivially on H3(PSL(2, IF?)) and (C.7) can be replaced by: 

HJ(PGL(S, R))z H,(PSL(2, R))u IF*. 

Proof. A number of the arguments are already present in DuPont-Sah [4, Lemmas 
5.4, 5.5, and 5.71. We reorganize them. Let C=&*,,, iz. ({r)} qqith subgroup 
C’= UT,, 72 l {{r}}, rE I?. Let B be the subgroup of C generated by R(r,, rz) in 
(C.4) with rl #rr2 ranging over R- (0, 1) and let B’cCTB be the subgroup 
generated by R(rl, rz) in (C.4) with r2 > rl > 1. By definition, ,& = C/B, and 
H3( W/G”) z C/b\’ /see Theorem 2.35). 
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In accordance wiih Dupont-Sah [4, Lemma 5.4, 5.51, we have a subgroup D of 
li1 generated by 4( (- 1) } and R;(r), 1 I is 4, defined by 

R,(r)= ({r}} + ({r-.‘I), r>O and ~1; 

R,!r)={{r}}+{{r-‘}}-2{{-l)}, rc0; 
(C.15) 

Wr)={(r}}+{{l--r}}-2{{1/2}}, O<r<l; _ 

R4(r)={{r}}+{{1--r}}-2{{1/2))+2{{-I}}, either r<Oor r>l. 

It is then easy to conclude that the natural map in Theorem C.14 is surjective. 

Straightforward computations imply that (rl f rz in IR - (0, l}): 

(C 16) R(r,, rl ), RV; ‘, r? ’ ),R( 1 -rl, 1 -r?), R(rz/r,,rz)= +R(r,,+) mod D. 

We nest assert that: 

(C.17) B=B’+D. 

It is enough to show that R(q) rz) E B’+ D for rl # rz in IR - (41). Since 

R(r,,r+R(l -rl, 1 -r?) mod D, 

we can assume rl >O. Similarly, using R(r,-’ , ri ’ ), we may assume OC rl < 1; and 
using R( 1 - rl, I - rl) once more, we may also assume rz > 0. Ii G 0 r3 c 1, then either 

R(r, I, rz * ) or R(r;‘.r, ‘) E B’. If r_,> 1, 

(C. 17) therefore follows from (C. i6). 
then either R(rJr,, r?) or R(r:, Mr,)e B’. 6 _ 

The injectivity assert ion in Theorem C.14 is equivalert with: 
Rn C’= B’+ 21. 12( (2> ). Using (C. 17), it is then equivalent with: 

(C. 18) DIIC’=DnB’+& 12{(2}}. 

In order to show (C. 18), we note that for r >2, we have: 

(C’. 19) 

R&)-R.& ‘)+R,W(r- l))-2R1(2)=R(r/(r- 1x2) 
- R(2,r)c B’nD, 

Rdr)=RAr)-R3(r ‘)+ R,(r/(r- l))-2R,(2)- RJr/(r- I)) 
i- R2(1 - r) + ZRJZ). 

From these follows the assertion: 

(c-20) D can be defined with R,(r) restricted so that -1 sr<O or 1 <rs2. 

With (C.20) in force, suppose that an element x of C’ is expressible as an integral 

linear combination of 4( (- l}} and R,(r), 15 i ~4, i.e., XE DnC’. Since no sym- 
bols C(r)), r< - 1, appear in x, (C.20) and the definition of D and C’ shows that 
there are no R,(r)-terms in cur integral linear combination. Since no symbols 

.I { r ) ) , r < 0, appear in x, the preceding assert ion implies that there are no R,(r)- 
terms other than R,(2) = R,(- 1) in our integral linear combination. Since we are 

or~ly interested in showing that s lies in Dn B’+ Z 9 12({2}}, the first identity in 



Third homology of SL(2, IR) made discrete 209 

(C. 19) now allows us to assume that x is expressible as an integral linear combina- 
tion of 4{ { - 1))) R,(2), and R!(r). Since no symbols {{r}}, r< 1, appear in x, our 
integral linear combination can only involve 4{ { - l}}, R4(2) and R,(2) = R,( l/2). 
It is then clear that x can be expressed as an integral linear combination of 
3{{2}}+3{{-1)) and 4{{-1)). Sincle ((-1)) does not appear in X, we conclude 
that x must lie in Z l 12{ (2)) as asserted in (C. 18). 
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